Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice.

نویسندگان

  • Jérôme Ruel
  • Sarah Emery
  • Régis Nouvian
  • Tiphaine Bersot
  • Bénédicte Amilhon
  • Jana M Van Rybroek
  • Guy Rebillard
  • Marc Lenoir
  • Michel Eybalin
  • Benjamin Delprat
  • Theru A Sivakumaran
  • Bruno Giros
  • Salah El Mestikawy
  • Tobias Moser
  • Richard J H Smith
  • Marci M Lesperance
  • Jean-Luc Puel
چکیده

Autosomal-dominant sensorineural hearing loss is genetically heterogeneous, with a phenotype closely resembling presbycusis, the most common sensory defect associated with aging in humans. We have identified SLC17A8, which encodes the vesicular glutamate transporter-3 (VGLUT3), as the gene responsible for DFNA25, an autosomal-dominant form of progressive, high-frequency nonsyndromic deafness. In two unrelated families, a heterozygous missense mutation, c.632C-->T (p.A211V), was found to segregate with DFNA25 deafness and was not present in 267 controls. Linkage-disequilibrium analysis suggested that the families have a distant common ancestor. The A211 residue is conserved in VGLUT3 across species and in all human VGLUT subtypes (VGLUT1-3), suggesting an important functional role. In the cochlea, VGLUT3 accumulates glutamate in the synaptic vesicles of the sensory inner hair cells (IHCs) before releasing it onto receptors of auditory-nerve terminals. Null mice with a targeted deletion of Slc17a8 exon 2 lacked auditory-nerve responses to acoustic stimuli, although auditory brainstem responses could be elicited by electrical stimuli, and robust otoacoustic emissions were recorded. Ca(2+)-triggered synaptic-vesicle turnover was normal in IHCs of Slc17a8 null mice when probed by membrane capacitance measurements at 2 weeks of age. Later, the number of afferent synapses, spiral ganglion neurons, and lateral efferent endings below sensory IHCs declined. Ribbon synapses remaining by 3 months of age had a normal ultrastructural appearance. We conclude that deafness in Slc17a8-deficient mice is due to a specific defect of vesicular glutamate uptake and release and that VGLUT3 is essential for auditory coding at the IHC synapse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensorineural Deafness and Seizures in Mice Lacking Vesicular Glutamate Transporter 3

The expression of unconventional vesicular glutamate transporter VGLUT3 by neurons known to release a different classical transmitter has suggested novel roles for signaling by glutamate, but this distribution has raised questions about whether the protein actually contributes to glutamate release. We now report that mice lacking VGLUT3 are profoundly deaf due to the absence of glutamate releas...

متن کامل

Vesicular Glutamate Transporter 3 in age-dependent optic neuropathy

PURPOSE To determine retinal vesicular glutamate transporter 3 (VGLUT3) expression alterations in a mouse model of progressive optic neuropathy (glaucoma). METHODS Tissue specimens were obtained from age-matched DBA/2J and control C57BL/6J mice for western blot analysis. Enucleated globes from DBA/2J, C57BL/6J, and BALB/cJ mice were fixed in formalin, paraffin-embedded, and sectioned for VGLU...

متن کامل

Temporospatial expression and cellular localization of VGLUT3 in the rat cochlea.

Vesicular glutamate transporter 3 (VGLUT3) plays an important role in hearing, and VGLUT3 knockout mice are deaf. However, the mechanisms whereby VGLUT3 exerts its effects in the cochlea are not well established. Elucidating the developmental and aging dynamics of VGLUT3 localization and expression in the cochlea would aid a functional understanding of auditory glutamatergic transmission. In th...

متن کامل

Restoration of Hearing in the VGLUT3 Knockout Mouse Using Virally Mediated Gene Therapy

Mice lacking the vesicular glutamate transporter-3 (VGLUT3) are congenitally deaf due to loss of glutamate release at the inner hair cell afferent synapse. Cochlear delivery of VGLUT3 using adeno-associated virus type 1 (AAV1) leads to transgene expression in only inner hair cells (IHCs), despite broader viral uptake. Within 2 weeks of AAV1-VGLUT3 delivery, auditory brainstem response (ABR) thr...

متن کامل

Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells

Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of human genetics

دوره 83 2  شماره 

صفحات  -

تاریخ انتشار 2008